Morphology Control and Photocatalysis Enhancement by in Situ Hybridization of Cuprous Oxide with Nitrogen-Doped Carbon Quantum Dots.
نویسندگان
چکیده
Cuprous oxide (Cu2O) is an attractive photocatalyst because of its visible-light-driven photocatalytic behavior, abundance, low toxicity, and environmental compatibility. However, its short electron diffusion length and low hole mobility result in low photocatalytic efficiency, which hinders its wider applications. Herein, we report an in situ method to introduce nitrogen-doped carbon dots (N-CDs) into Cu2O frameworks. It is interestingly found that the introduction of N-CDs drives the morphology of N-CDs/Cu2O to evolve from rough cube to sphere, and the most encouraging result is that all of the obtained N-CDs/Cu2O composites exhibit better photocatalytic activities than pure Cu2O cubes. The optimal N-CDs/Cu2O photocatalyst is synthesized with 10 mL of N-CDs solution, which shows the best degradation ability (100%, 70 min), far superior to pure Cu2O cubes (∼5%, 70 min) and P25 (∼10%, 70 min). Beside the photodegradation of methyl orange, N-CDs/Cu2O(10) composites also exhibit excellent photocatalytic activities in the photodegradation of methyl blue and rhodamine B. It is demonstrated that the excellent photocatalytic performance of N-CDs/Cu2O composites can be attributed to the highly roughened structure and the suppression of electron-hole recombination as a result of the introduction of N-CDs. These findings demonstrate that the conjugation of CDs is a promising method to improve the photocatalytic activities for traditional semiconductors.
منابع مشابه
The potentiality of the functionalized nitrogen and thiol-doped graphene quantum dots (GQDs-N-S) to stabilize the antibodies in the designing of human chorionic gonadotropin immunosensor
In this study, for the first time, a simple immunosensor for ultrasensitive recognition of Human Chorionic Gonadotropin (hCG) in serum samples was fabricated by exploiting a simple approach. In this method, a low-cost and sensitive immunosensor was fabricated based on QDs-N-S/Au nanoparticles (NPs) modified Screen-Printed Carbon Electrode (SPCE). It seems that, QDs-N-S/Au NPs/ antibody as a bio...
متن کاملDetection of Cu2+, Degradation of Acid Brown and Removing Cd2+ from the Water by High Photoluminescence Carbon Dots Synthesized from Milk
In this experimental work, nitrogen-doped carbon quantum dots were successfully synthesized with hydrothermal of the milk. The product was composed of a powder and a stable colloid. The structure of the product was examined by XRD, EDS and FT-IR analysis. Also the particle size of the product was investigated by SEM and TEM images and the results showed the product is mainly composed of the par...
متن کاملScale‐Up Synthesis of Fragrant Nitrogen‐Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis
Fragrant nitrogen-doped carbon dots of gram scale can be prepared from commercial bee pollens by a hydrothermal process. These carbon dots of 1-2 nm in size show promising applications in cellular imaging and catalysis/photocatalysis.
متن کاملSynthesis of Cuprous Oxide by Thermal Treatment in Liquid Paraffin
Cu2O nanoparticles were synthesized by thermal treatment in liquid paraffin without any inert gas protection using nano structures of Schiff base copper (II) complex (1) as precursor. Liquid paraffin was used as solvent and reductant. Span 80 was applied to control the morphology of cuprous oxide nanoparticles. The nano structure of the complex was characterized by X-ray diffraction measurement...
متن کاملNitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate.
The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 32 37 شماره
صفحات -
تاریخ انتشار 2016